18,575 research outputs found

    Age-related differentiation of sensorimotor control strategies during pursuit and compensatory tracking

    Get PDF
    Motor control deficits during aging have been well-documented. Various causes of neuromotor decline, including both peripheral and central neurological deficits, have been hypothesized. Here, we use a model of closed-loop sensorimotor control to examine the functional causes of motor control deficits during aging. We recruited 14 subjects aged 19-61 years old to participate in a study in which they performed single-joint compensatory and pursuit tracking tasks with their dominant hand. We found that visual response delay and visual noise increased with age, while reliance on visual feedback, especially during compensatory tracking decreased. Increases in visual noise were also positively correlated with increases in movement error during a reach and hold task. The results suggest an increase in noise within the visuomotor control system may contribute to the decline in motor performance during early aging

    Visual and Proprioceptive Contributions to Compensatory and Pursuit Tracking Movements in Humans

    Get PDF
    An ongoing debate in the field of motor control considers how the brain uses sensory information to guide the formation of motor commands to regulate movement accuracy. Recent research has shown that the brain may use visual and proprioceptive information differently for stabilization of limb posture (compensatory movements) and for controlling goal-directed limb trajectory (pursuit movements). Using a series of five experiments and linear systems identification techniques, we modeled and estimated the sensorimotor control parameters that characterize the human motor response to kinematic performance errors during continuous compensatory and pursuit tracking tasks. Our findings further support the idea that pursuit and compensatory movements of the limbs are differentially controlled

    The growth of small corrosion fatigue cracks in alloy 2024

    Get PDF
    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water

    ECONOMIC IMPACTS OF REGULATIONS TO PRESERVE NATIVE WOODLAND ON PRIVATE PROPERTY: A CASE STUDY IN THE HUNTER VALLEY OF NEW SOUTH WALES

    Get PDF
    Australian policies to preserve native vegetation on farms rest on mandatory regulations without compensation, whereas policies in most OECD countries rest on voluntary conservation with compensation. In New South Wales, the Native Vegetation Conservation Act 1998 restricts farmers from clearing native vegetation on their own freehold land, and offers no compensation. The Act may therefore impose opportunity costs, or losses in income, on landholders. These opportunity costs are estimated for a case study property in the Hunter Valley of New South Wales, and these results are then generalised to assess the broad trade-offs between development and preservation. The losses in income appear to vary between 5 and 10 per cent of annual income, depending on livestock prices. The flow of these losses over time appears to total some $26m for all properties of this kind in the immediate region. In addition to imposition of these direct opportunity costs, the regulations hinder land sales and so hinder adjustment by landholders to changing conditions.Native vegetation, environmental preservation, opportunity cost., Land Economics/Use,

    Dynamic analysis of the large deployable reflector

    Get PDF
    The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations

    Strong-field tidal distortions of rotating black holes: III. Embeddings in hyperbolic 3-space

    Full text link
    In previous work, we developed tools for quantifying the tidal distortion of a black hole's event horizon due to an orbiting companion. These tools use techniques which require large mass ratios (companion mass μ\mu much smaller than black hole mass MM), but can be used for arbitrary bound orbits, and for any black hole spin. We also showed how to visualize these distorted black holes by embedding their horizons in a global Euclidean 3-space, E3{\mathbb{E}}^3. Such visualizations illustrate interesting and important information about horizon dynamics. Unfortunately, we could not visualize black holes with spin parameter a∗>3/2≈0.866a_* > \sqrt{3}/2 \approx 0.866: such holes cannot be globally embedded into E3{\mathbb{E}}^3. In this paper, we overcome this difficulty by showing how to embed the horizons of tidally distorted Kerr black holes in a hyperbolic 3-space, H3{\mathbb{H}}^3. We use black hole perturbation theory to compute the Gaussian curvatures of tidally distorted event horizons, from which we build a two-dimensional metric of their distorted horizons. We develop a numerical method for embedding the tidally distorted horizons in H3{\mathbb{H}}^3. As an application, we give a sequence of embeddings into H3{\mathbb{H}}^3 of a tidally interacting black hole with spin a∗=0.9999a_*=0.9999. A small amplitude, high frequency oscillation seen in previous work shows up particularly clearly in these embeddings.Comment: 10 pages, 6 figure

    Intention Tremor and Deficits of Sensory Feedback Control in Multiple Sclerosis: a Pilot Study

    Get PDF
    Background Intention tremor and dysmetria are leading causes of upper extremity disability in Multiple Sclerosis (MS). The development of effective therapies to reduce tremor and dysmetria is hampered by insufficient understanding of how the distributed, multi-focal lesions associated with MS impact sensorimotor control in the brain. Here we describe a systems-level approach to characterizing sensorimotor control and use this approach to examine how sensory and motor processes are differentially impacted by MS. Methods Eight subjects with MS and eight age- and gender-matched healthy control subjects performed visually-guided flexion/extension tasks about the elbow to characterize a sensory feedback control model that includes three sensory feedback pathways (one for vision, another for proprioception and a third providing an internal prediction of the sensory consequences of action). The model allows us to characterize impairments in sensory feedback control that contributed to each MS subject’s tremor. Results Models derived from MS subject performance differed from those obtained for control subjects in two ways. First, subjects with MS exhibited markedly increased visual feedback delays, which were uncompensated by internal adaptive mechanisms; stabilization performance in individuals with the longest delays differed most from control subject performance. Second, subjects with MS exhibited misestimates of arm dynamics in a way that was correlated with tremor power. Subject-specific models accurately predicted kinematic performance in a reach and hold task for neurologically-intact control subjects while simulated performance of MS patients had shorter movement intervals and larger endpoint errors than actual subject responses. This difference between simulated and actual performance is consistent with a strategic compensatory trade-off of movement speed for endpoint accuracy. Conclusions Our results suggest that tremor and dysmetria may be caused by limitations in the brain’s ability to adapt sensory feedback mechanisms to compensate for increases in visual information processing time, as well as by errors in compensatory adaptations of internal estimates of arm dynamics

    National Newspaper Analysis of the Press Coverage of Jesse Jackson\u27s 1984 Presidential Campaign: The Confirmation of the Candidate

    Get PDF
    Jesse Jackson\u27s 1984 and 1988 presidential campaigns have motivated thousands of citizens throughout America to take a more active role in politics. The 1984 campaign witnessed many previously unregistered Americans actively participating in Jackson\u27s call to join the Rainbow Coalition. Four years later, Jackson once again hit a responsive chord within the American electorate, broadening his support base in his second run for the White House. His vibrant campaigns presented challenges not only to the American system of government, but also to accepted journalistic traditions in campaign reporting. Specifically, the dilemma has been a difficult one for journalists responsible for campaign coverage. How much coverage should a reporter give to Jesse Jackson\u27s campaign? Should he be treated like an Alan Cranston or Gary Hart in 1984, or a Paul Simon or Albert Gore in 1988? Or does the historical impact of his being the first black candidate to make a serious bid for the presidency warrant a different approach to press coverage? Highlighting this dilemma in the 1984 campaign, Dates and Gandy note: Jackson\u27s candidacy was a challenge for the press because on the one hand journalistic traditions would dictate that the ideological orientation of the media organization would constrain its coverage to be consistent with longstanding editorial practice.[1
    • …
    corecore